Appendix B

Carbon Sequestration in State Statutes and Regulations

Comments of the Attorneys General of California, Connecticut, Delaware, Illinois, Iowa, Maine, Maryland, Massachusetts, Minnesota (by and through its Minnesota Pollution Control Agency), New Jersey, New Mexico, New York, North Carolina, Oregon, Pennsylvania, Rhode Island, Vermont, Virginia, and Washington, and the District of Columbia, the Maryland Department of the Environment, and the cities of Boulder (CO), Chicago, Los Angeles, New York, Philadelphia, and South Miami (FL), and Broward County (FL)
on

March 18, 2019
Carbon Sequestration in State Statutes and Regulations

STATUTES & REGULATIONS
BY STATE

1. Alabama

2. California
 c. Cal. Code Regs. tit. 17, § 95852(g) (2012) (amended 2015): Carbon dioxide suppliers are regulated under California’s cap-and-trade program, but any carbon dioxide supplied that is ultimately geologically sequestered is not included in their compliance obligation (e.g., carbon dioxide supplied for enhanced oil recovery).
 d. Cal. Code Regs. tit. 20, § 2904 (2007): Carbon dioxide that is sequestered is not included in the CO₂ emissions compliance obligation for power plants.

3. Colorado
 b. Colo. Rev. Stat. § 25-1-1303 (West 2006): In 2006, provided $50,000 grant to the Colorado School of Mines to research “geologic carbon sequestration as technique for mitigating the emissions of greenhouse gases in the state.”

4. Florida
 a. Fla. Stat. § 366.8255 (West 2008) (amended 2012): Allows inclusion of “[c]osts or expenses prudently incurred for scientific research and geological assessments of carbon capture and storage” in utilities’ environmental compliance costs which may be recovered from ratepayers.

Appendix B, page 1

5. Illinois

a. 20 Ill. Comp. Stat. Ann. 3855/1-75 (West 2009) (amended 2018): Requires a 5% clean coal portfolio standard for utilities and sets parameters for “initial clean coal plants” that include at least 50% carbon capture and sequestration.

e. 220 Ill. Comp. Stat. Ann. 5/16-115 (West 2009) (amended 2015): In order to supply electricity to alternative retail electric suppliers as part of their renewable energy portfolios, clean coal facilities must either sequester 50% of CO₂ emissions or purchase offsets to cover any drop of the total emissions sequestered below 50%.

f. 220 Ill. Comp. Stat. Ann. § 75/1 et seq. (West 2011): “Carbon Dioxide Transportation and Sequestration Act.” Regulates the construction of pipelines to transport carbon dioxide to sequestration and enhanced oil recovery, as “critical to the promotion and use of Illinois coal.”

6. **Indiana**

 b. **Ind. Code § 14-39-1-1 et seq. (West 2011):** “Eminent Domain for Transportation of Carbon Dioxide by Pipeline” grants certified CO₂ pipeline company authority to condemn a right-of-way for construction of pipelines to transport CO₂ to EOR, deep saline injection, or sequestration, inside or outside Indiana.

7. **Iowa**

 a. **Iowa Code Ann. § 476.53 (West 2010) (amended 2018):** Includes addition of carbon capture facility as significant alteration whose costs can be recovered from ratepayers.

8. **Kansas**

9. **Kentucky**

 a. **Ky. Rev. Stat. Ann. § 353.800 et seq. (West 2011):** The “Geologic Storage of Carbon Dioxide” subsection of the Mines and Minerals Code states an explicit “economic priority” to attract CCS projects “that will create jobs … and favorably position the Commonwealth for future leadership and growth in the field.” Other provisions relate to rights to ownership of pore space where carbon dioxide could be stored in geologic formations and monitoring requirements for sites where carbon dioxide has been stored.

10. Louisiana

e. La. Admin Code tit. 43, pt. XIX, § 403 (2016): Regulates the injection of CO₂ for EOR operations, including provisions to prevent or correct CO₂ leaks.

11. Maine

 a. Me. Rev. Stat. tit. 38, § 585-K (West 2008): Subsection 4 provides that carbon dioxide that has been “captured and used for a commercial purpose” or “permanently disposed of in geological formations” shall not be counted as emissions for the purpose of the code.

12. Massachusetts

13. Michigan

 b. Mich. Comp. L. Ann. § 460.1047 (West 2017): Allows power plants to recover costs of constructing and maintaining “advanced cleaner energy systems,” which include, in coal-fired plants, carbon capture and geologic sequestration of 85% or more CO2 emissions.

14. Minnesota

15. Mississippi

 a. Miss. Code Ann. § 53-11-1 et seq. (West 2011): “Mississippi Geologic Sequestration of Carbon Dioxide Act.” Authorizes the State Oil and Gas Board to regulate carbon storage in the state, including by approving carbon storage facilities, regulating the use of carbon dioxide in enhanced oil recovery (EOR), maintaining compliance with Safe Drinking Water Act, and establishing bond or deposit requirements for operators. The legislative findings state, “Geologic
sequestration of carbon dioxide is an emerging industry that has the potential to provide jobs, investment, and other economic opportunities for the people of Mississippi, and is a valuable incentive for Mississippi to attract new industry.”

b. Miss. Code Ann. § 27-65-19 (2013): Applies a significantly reduced sales tax rate to carbon dioxide sold to EOR projects or permanent geological sequestration. See also 32 Miss. Admin. Code Pt. IV, r. 6.01 (same).

16. Montana

c. Mont. Code Ann. § 69-8-421 (West 2007): Moratorium on new coal-fired power facilities, unless a facility captures and sequesters a minimum 50% CO₂ emissions, until such time as uniform federal or state standards for CCS are adopted. (See also Mont. Admin. R. 38.5.8228(2)(f) (2008) (implementing regulation requiring coal-fired plants to demonstrate 50% CCS in application to Commission).)

e. Mont. Code Ann. § 75-5-401 (West 2009): Exempts CO₂ injection wells from water permit requirements if they are properly permitted under oil and gas code.

f. Mont. Code Ann. § 82-11-101 et seq. (West 2009): Provides for regulation of CO₂ wells by the Board of Oil and Gas Conservation, contingent on the U.S. EPA’s grant of primacy to administer activities at CO₂ sequestration wells.

i. Mont. Code Ann. § 82-11-111 (West 2009): Gives Board exclusive jurisdiction over CO₂ injection wells and geologic storage reservoirs, allowing the Board to issue permits, adopt design standards, and establish measures to prevent contamination, among other things.

v. Mont. Code Ann. § 82-11-183 (West 2009): Authorizes Board to issue completion certificates to wells that have completed injection of CO₂.

vi. Mont. Code Ann. 82-11-184 (West 2009): Allows for conversion of EOR well to CO₂ storage well.

17. New Hampshire

18. New Mexico

19. New York

20. North Dakota

a. N.D. Cent. Code § 17-01-01 (West 2007): Adoption of 25x25 Initiative, which supports use of carbon sequestration as part of effort to get 25% of American energy from America’s renewable natural resources, while continuing to provide adequate food.
b. N.D. Cent. Code § 38-22-01 et seq. (West 2009): The “Carbon Dioxide and Underground Storage” law’s policy declaration says that it is in the interest of North Dakota to promote geologic storage of carbon dioxide. Other sections provide for permitting procedures and requirements, environmental protection, fees based on tons of CO2 stored, penalties for noncompliance, and conversion of EOR operations to CO2 storage.

d. N.D. Cent. Code § 57-60-02.1 (West 2009) (amended 2017): “Coal Conversion Facilities Tax.” Provides a 20%-50% tax credit to coal facilities that capture and store 20%-80% of their CO2 emissions.

e. N.D. Admin. Code 43-05-01-01 et seq. (2013): Provides permitting procedures and requirements for geologic storage of carbon dioxide, including environmental mandates, financial responsibility, recordkeeping and reporting. These regulations and the “Carbon Dioxide and Underground Storage” statutes formed the basis of EPA’s approval on April 24, 2018 of North Dakota’s state-administered Class VI underground injection control program.

21. Ohio

22. Oklahoma

b. Okla. Stat. tit. 27A, § 3-5-101 et seq. (West 2009) (amended 2011): The “Oklahoma Carbon Capture and Geologic Sequestration Act” gives jurisdiction to the Corporation Commission to oversee CO2 injections in oil or gas reservoirs and to the Department of Environmental Quality for any other geologic formations. Authorizes the respective agencies to conduct permitting and other regulation for CO2 storage within their jurisdiction. The legislative findings state: “Storage of carbon dioxide in geological formations is an effective and feasible strategy to deposit, store or sequester large volumes of carbon dioxide over long periods of time.”

c. Okla. Admin. Code § 155:30-1-1 et seq. (2009): Contains general provisions for voluntary carbon offset program, which may be implemented through geologic CO2 sequestration, as well as other methods.

23. Pennsylvania

24. Tennessee

a. Tenn. Comp. R. & Regs. 0400-12-01-.02 (2015): Classifying injection of CO₂ streams for geological storage as Class VI injection wells subject to 40 C.F.R. Parts 144 and 146 and Tennessee underground injection control regulations.

25. Texas

c. Tex. Tax Code Ann. § 171.602 (West 2009): Provides a tax credit to clean energy projects that sequester at least 70% of CO₂ emissions.

d. Tex. Tax Code Ann. § 202.0545 (West 2009): Provides a reduced tax rate for EOR projects that use and geologically sequester anthropogenic carbon dioxide. (See also Tex. Tax Code Ann. § 151.334 (West 2009) (exempting CCS equipment used in a clean energy project from sales and use taxes, if the captured CO₂ is either used in a local EOR project or sequestered in Texas for at least 1,000 years).)

e. Tex. Water Code Ann. § 27.041 et seq. (West 2009): Gives jurisdiction over CO₂ injection to Railroad Commission and authorizes the Commission to permit, collect fees for, and prescribe operational standards for CO₂ storage facilities, including proof of “financial responsibility” from facility operators.

h. 16 Tex. Admin. Code § 5.201 et seq. (2010), § 5.301 et seq. (2011): Regulates, respectively, the geologic sequestration of anthropogenic CO₂ in reservoirs and the use of anthropogenic CO₂ in EOR projects, with permit criteria and operational standards.

i. 34 Tex. Admin. Code § 3.326 (2010): Provides tax exemptions for carbon capture and storage equipment and pipelines, if the CO₂ is sequestered in Texas.

26. Utah

b. Utah Code Ann. § 54-17-601 et seq. (West 2008) (amended 2010): “Carbon Emissions Reductions for Electrical Corporations.” Requires that a certain portion of electricity supplied by utilities be low- or no-emission electricity to the extent it is cost effective, including via carbon capture and storage.

27. Vermont

a. Vermont Admin. Code r. 16-3-303:11-201 (2014): Classifying injection of CO₂ streams for geological sequestration as Class VI injection wells subject to Vermont underground injection control regulations.

28. Virginia

compatible, clean-coal powered” power plants.

29. Washington

a. Wash. Rev. Code Ann. § 80.70.010 et seq. (West 2004): Requires that newly proposed fossil fuels power plants include a carbon dioxide mitigation plan, which include a carbon capture and storage mechanism.

30. West Virginia

31. Wisconsin

32. Wyoming

(Continued on next page)
STATUTES AND REGULATIONS BY SUBJECT AREA

I. Permitting / Monitoring Rules and Procedures for CCS

1. Alabama

2. Illinois
 a. 220 Ill. Comp. Stat. Ann. § 75/1 et seq. (West 2011): “Carbon Dioxide Transportation and Sequestration Act.” Regulates the construction of pipelines to transport carbon dioxide to sequestration and enhanced oil recovery, as “critical to the promotion and use of Illinois coal.”

3. Indiana
 a. Ind. Code § 14-39-1-1 et seq. (West 2011): “Eminent Domain for Transportation of Carbon Dioxide by Pipeline” grants certified CO2 pipeline company authority to condemn a right-of-way for construction of pipelines to transport CO2 to EOR, deep saline injection, or sequestration, inside or outside Indiana.

4. Kentucky
 a. Ky. Rev. Stat. Ann. § 353.800 et seq. (West 2011): The “Geologic Storage of Carbon Dioxide” subsection of the Mines and Minerals Code states an explicit “economic priority” to attract CCS projects “that will create jobs … and favorably position the Commonwealth for future leadership and growth in the field.” Other provisions relate to rights to ownership of pore space where carbon dioxide could be stored in geologic formations and monitoring requirements for sites where carbon dioxide has been stored.
5. **Louisiana**

 d. *La. Admin Code tit. 43, pt. XI, subpt. 4 (last amended 2017)*: Regulates the construction, design, and operation of CO₂ transmission pipelines, including detailed regulations on safety and maintenance.

6. **Michigan**

7. **Mississippi**

 a. *Miss. Code Ann. § 53-11-1 et seq. (West 2011)*: “Mississippi Geologic Sequestration of Carbon Dioxide Act.” Authorizes the State Oil and Gas Board to regulate carbon storage in the state, including by approving carbon storage facilities, regulating the use of carbon dioxide in enhanced oil recovery (EOR), maintaining compliance with Safe Drinking Water Act, and establishing bond or deposit requirements for operators. The legislative findings state, “Geologic sequestration of carbon dioxide is an emerging industry that has the potential to provide jobs, investment, and other economic opportunities for the people of Mississippi, and is a valuable incentive for Mississippi to attract new industry.”

8. Montana

 i. Mont. Code Ann. § 82-11-111 (West 2009): Gives Board exclusive jurisdiction over CO2 injection wells and geologic storage reservoirs, allowing the Board to issue permits, adopt design standards, and establish measures to prevent contamination, among other things.

 v. Mont. Code Ann. § 82-11-183 (West 2009): Authorizes Board to issue completion certificates to wells that have completed injection of CO2.

9. North Dakota

a. N.D. Cent. Code § 38-22-01 et seq. (West 2009): The “Carbon Dioxide and Underground Storage” law’s policy declaration says that it is in the interest of North Dakota to promote geologic storage of carbon dioxide. Other sections provide for permitting procedures and requirements, environmental protection, fees based on tons of CO2 stored, penalties for noncompliance, and conversion of EOR operations to CO2 storage.

10. Ohio

11. Oklahoma

a. Okla. Stat. tit. 27A, § 3-5-101 et seq. (West 2009) (amended 2011): The “Oklahoma Carbon Capture and Geologic Sequestration Act” gives jurisdiction to the Corporation Commission to oversee CO\textsubscript{2} injections in oil or gas reservoirs and to the Department of Environmental Quality for any other geologic formations. Authorizes the respective agencies to conduct permitting and other regulation for CO\textsubscript{2} storage within their jurisdiction. The legislative findings state: “Storage of carbon dioxide in geological formations is an effective and feasible strategy to deposit, store or sequester large volumes of carbon dioxide over long periods of time.”

12. Tennessee

a. Tenn. Comp. R. & Regs. 0400-12-01-.02 (2015): Classifying injection of CO\textsubscript{2} streams for geological storage as Class VI injection wells subject to 40 C.F.R. Parts 144 and 146 and Tennessee underground injection control regulations.

13. Texas

a. Tex. Nat. Res. Code Ann. § 121.001 et seq. (West 2009) (amended 2011): Provides rules for ownership of CO\textsubscript{2} stored in geologic formations and creates trust fund funded through fees paid by CO\textsubscript{2} storage facility operators, used for monitoring, remediation, enforcement and other activities related to geologic CO\textsubscript{2} storage.

b. Tex. Water Code Ann. § 27.041 et seq. (West 2009): Gives jurisdiction over CO\textsubscript{2} injection to Railroad Commission and authorizes the Commission to permit, collect fees for, and prescribe operational standards for CO\textsubscript{2} storage facilities, including proof of “financial responsibility” from facility operators.

d. 16 Tex. Admin. Code § 5.201 et seq. (2010), § 5.301 et seq. (2011): Regulates, respectively, the geologic sequestration of anthropogenic CO\textsubscript{2} in reservoirs and
the use of anthropogenic CO₂ in EOR projects, with permit criteria and operational standards.

14. Utah

15. Vermont
 a. Vermont Admin. Code r. 16-3-303:11-201 (2014): Classifying injection of CO₂ streams for geological sequestration as Class VI injection wells subject to Vermont underground injection control regulations.

16. Washington

17. West Virginia

18. Wyoming

II. Recognizing Power Plants with CCS Under Low-Carbon Energy Laws

1. California

 b. Cal. Code Regs. tit. 17, § 95852(g) (2012) (amended 2015): Carbon dioxide suppliers are regulated under California’s cap-and-trade program, but any carbon dioxide supplied that is ultimately geologically sequestered is not included in their compliance obligation (e.g., carbon dioxide supplied for enhanced oil recovery).

 c. Cal. Code Regs. tit. 20, § 2904 (2007): Carbon dioxide that is sequestered is not included in the CO₂ emissions compliance obligation for power plants.

2. Florida

3. Illinois

 a. 20 Ill. Comp. Stat. Ann. 3855/1-75 (West 2009) (amended 2018): Subsection (d) requires a 5% clean coal portfolio standard for utilities and sets parameters for so-called “initial clean coal plants” that include at least 50% carbon capture and sequestration.

 c. 220 Ill. Comp. Stat. Ann. 5/16-115 (West 2009) (amended 2015): In order to supply electricity to alternative retail electric suppliers as part of their renewable energy portfolios, clean coal facilities must either sequester 50% of CO₂ emissions or purchase offsets to cover any drop of the total emissions sequestered below 50%.

4. **Maine**

a. **Me. Rev. Stat. tit.38. § 585-K (West 2008):** Subsection 4 provides that carbon
dioxide that has been “captured and used for a commercial purpose” or
“permanently disposed of in geological formations” shall not be counted as
emissions for the purpose of the code.

5. **Massachusetts**

sequestration is included in the definition of “clean energy research” which may be
supported by Massachusetts Alternative and Clean Energy Investment Trust Fund,
which is created by this chapter.

6. **Minnesota**

storage, or sequestration” is included in definition of “green economy.” Provides
for actions to promote job training in support of green economy.

and geologically sequestered for purposes of ban on constructing power plants
that contribute to state carbon dioxide emissions.

7. **Montana**

facilities, unless a facility captures and sequesters a minimum 50% CO₂ emissions,
until such time as uniform federal or state standards for CCS are adopted. See also
Mont. Admin. R. 38.5.8228(2)(f) (2008) (implementing regulation requiring coal-
fired plants to demonstrate 50% CCS in application to Commission).

8. **New York**

using CCS as “clean energy enterprises” eligible for state incentives.

9. **Oklahoma**

voluntary carbon offset program which may be implemented through geologic
sequestration of carbon as well as other methods.

10. **Utah**

Electric Utility Carbon Emission Reduction Act.” Requires that a certain portion of
electricity supplied by municipal utilities be renewably sourced, with an allowed reduction for fossil-fuel generation that captures and geologically sequesters CO₂.

b. Utah Code Ann. § 54-17-601 et seq. (West 2008) (amended 2010): “Carbon Emissions Reductions for Electrical Corporations.” Requires that a certain portion of electricity supplied by utilities be low- or no-emission electricity to the extent it is cost effective, including via carbon capture and storage.

11. Washington

a. Wash. Rev. Code Ann. § 80.70.010 et seq. (West 2004): Requires that newly proposed fossil fuels power plants include a carbon dioxide mitigation plan, which include a carbon capture and storage mechanism.

b. Wash. Rev. Code Ann. § 80.80.040 (West 2007) (amended 2011): Institutes fossil-fueled generating plant emissions performance standard of 1,100 lbs. CO₂/MWh that may be met in part through carbon capture and storage, including geologic sequestration.

12. Wisconsin

III. Allowing Cost Recovery

1. Colorado

2. **Florida**
 a. **Fla. Stat. § 366.8255 (West 2008) (amended 2012):** Allows inclusion of “[c]osts or expenses prudently incurred for scientific research and geological assessments of carbon capture and storage” in utilities’ environmental compliance costs which may be recovered from ratepayers.

3. **Illinois**

4. **Iowa**
 a. **Iowa Code Ann. § 476.53 (West 2010) (amended 2018):** Includes addition of carbon capture facility as significant alteration whose costs can be recovered from ratepayers.

5. **Michigan**
 a. **Mich. Comp. L. Ann. § 460.1047 (West 2017):** Allows power plants to recover costs of constructing and maintaining “advanced cleaner energy systems,” which include, in coal-fired plants, carbon capture and geologic sequestration of 85% or more CO₂ emissions.

6. **New Hampshire**

7. **New Mexico**
 a. **N.M. Stat. Ann. § 62-6-28 (West 2007):** Allows utilities to recover costs incurred for clean energy projects, including coal-based plants using CCS to achieve 1,100 lbs. CO₂/MWh limit.

8. **Virginia**
IV. **Proving Grants or Tax Incentives**

1. **Colorado**
 a. **Colo. Rev. Stat. § 25-1-1303 (West 2006):** In 2006, provided $50,000 grant to the Colorado School of Mines to research “geologic carbon sequestration as technique for mitigating the emissions of greenhouse gases in the state.”

2. **Illinois**

3. **Indiana**

4. **Iowa**

5. **Kansas**

6. **Kentucky**
defined as those built with “planning for or anticipating capture of carbon
dioxide in a manner to facilitate continued operation of the facility in compliance
with applicable federal requirements.” (See also Ky. Rev. Stat. Ann. § 143.31-
010 et seq. (2018) (providing tax incentives for, among other projects, a CO₂
pipeline).)

companies eligible for sales and use tax incentives under the Kentucky Investment
Act.

7. Louisiana

Mineral and Energy Board, among other powers, to “enter into operating
agreements whereby the state receives a share of revenues from the storage of oil,
natural gas, liquid or liquefied hydrocarbons, or carbon dioxide.” Includes as an
example “[e]stablishing a contractual agreement for the operation of a carbon
dioxide storage facility for the storage and distribution of carbon dioxide for
secondary or tertiary recovery operations.”

projects that use anthropogenic carbon dioxide.

8. Michigan

approved EOR projects using carbon dioxide injection.

9. Mississippi

carbon dioxide sold to EOR projects or permanent geological sequestration. See also
32 Miss. Admin. Code Pt. IV, r. 6.01 (same).

10. Montana

property tax abatement for coal gasification facilities with carbon capture and
sequestration, as well as carbon dioxide sequestration equipment.

tax rate for CO₂ sequestration equipment, carbon dioxide pipelines, and other
specified property. (See also Mont. Admin. R. 36.22.1707 (2015) (implementing
regulation on certifying CCS equipment for reduced tax rate).)

permit requirements if they are properly permitted under oil and gas code.
d. Mont. Admin. r. 17.80.201 et seq. (2011): Provides procedure for qualifying CO₂ sequestration equipment and pipelines for property tax rates incentivizing geologic CO₂ sequestration.

11. New Mexico

12. North Dakota

a. N.D. Cent. Code § 57-60-02.1 (West 2009) (amended 2017): “Coal Conversion Facilities Tax.” Provides a 20%-50% tax credit to coal facilities that capture and store 20%-80% of their CO₂ emissions.

13. Oklahoma

14. Texas

b. Tex. Tax Code Ann. § 171.602 (West 2009): Provides a tax credit to clean energy projects that sequester at least 70% of CO₂ emissions.

c. Tex. Tax Code Ann. § 202.0545 (West 2009): Provides a reduced tax rate for EOR projects that use and geologically sequester anthropogenic carbon dioxide. (See also Tex. Tax Code Ann. § 151.334 (West 2009) (exempting CCS equipment used in a clean energy project from sales and use taxes, if the captured CO₂ is either used in a local EOR project or sequestered in Texas for at least 1,000 years).)

15. West Virginia

Summary Table

<table>
<thead>
<tr>
<th></th>
<th>AL</th>
<th>CA</th>
<th>CO</th>
<th>FL</th>
<th>IL</th>
<th>IN</th>
<th>IA</th>
<th>KS</th>
<th>KY</th>
<th>LA</th>
<th>ME</th>
<th>MA</th>
<th>MI</th>
<th>MN</th>
<th>MS</th>
<th>MT</th>
<th>NH</th>
<th>NY</th>
<th>ND</th>
<th>OH</th>
<th>OK</th>
<th>PA</th>
<th>TN</th>
<th>TX</th>
<th>UT</th>
<th>VT</th>
<th>VA</th>
<th>WA</th>
<th>WV</th>
<th>WI</th>
<th>WY</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Regulates CCS operations</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulates injection wells</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulates pipelines</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>II. Recognizes CCS under low</td>
<td></td>
</tr>
<tr>
<td>carbon laws</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Voluntary offset programs</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>III. Allows cost recovery</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>IV. Grants or tax incentives</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Incentives for construction</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>of new CCS facility</td>
<td></td>
</tr>
<tr>
<td>Incentives based on emission</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>limits or capture rates</td>
<td></td>
</tr>
<tr>
<td>Direct public investment in</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>CCS facilities</td>
<td></td>
</tr>
</tbody>
</table>